

A project of the European Anti-Cybercrime Technology Development Association

(EACTDA)

D3.17 Tools packaging, release and

delivery handbook

D3.17 Tools packaging, release and delivery handbook

Page 2 of 48
The Tools4LEAs project(s)

Version: 1.0

Delivery date: October 2023

Dissemination level: Public

Status FINAL

Nature: Report

Main author(s): Jon Elduayen EACTDA

Contributor(s): Miguel Angel Blanco EACTDA

 Laura Peralta EACTDA

 Juan Arraiza EACTDA

DOCUMENT CONTROL

Version Date Author(s) Change(s)

0.1 14/09/2023 Juan Arraiza (EACTDA) TOC and initial text

0.2 28/09/2023 Jon Elduayen (EACTDA)
Miguel Ángel Blanco (EACTDA)
Laura Peralta (EACTDA)

First version for all sections
completed.

0.3 09/10/2023 Jon Elduayen (EACTDA) Updated with received feedback

1.0 25/10/2023 Jon Elduayen (EACTDA) QA review and final version, ready to
be submitted

D3.17 Tools packaging, release and delivery handbook

Page 3 of 48
The Tools4LEAs project(s)

TABLE OF CONTENTS

1. Introduction .. 4

1.2. Overview of the Tools4LEAs project ... 4

1.3. Main objective of this document .. 4

1.4. Relation to other deliverables .. 5

1.5. Structure of the deliverable .. 5

2. Packaging of tools ... 6

2.1. Definition .. 6

2.2. Processes involved .. 6

2.2.1. Compilation ... 6

2.2.2. Build documentation and packaging .. 10

2.3. Specificities within the Tools4LEAs project ... 13

3. Release of tools ... 16

3.1. Definition .. 16

3.1.1. Release preparation .. 23

3.1.2. Release execution .. 28

3.2. Specificities within the Tools4LEAs project ... 32

4. Delivery of tools .. 33

4.1. Definition ... 33

4.2. Processes involved .. 33

4.2.1. Delivery planning .. 33

4.2.2. Delivery preparation ... 36

4.2.3. Delivery execution (or release distribution) ... 39

4.3. Specificities within the Tools4LEAs project ... 44

5. Summary ... 45

5.1. Conclusion .. 45

5.2. Evaluation ... 45

5.3. Future work ... 45

ANNEX I – Overview of the SbomIPRChecker ... 46

ANNEX II – Software signing ... 47

ANNEX III – Overview of EACTDA’s repository of tools .. 48

D3.17 Tools packaging, release and delivery handbook

Page 4 of 48
The Tools4LEAs project(s)

1. Introduction

1.2. Overview of the Tools4LEAs project

EACTDA is the acronym of the European Anti-Cybercrime Technology Development Association, which

is a private non-profit association, established in San Sebastian, Spain. The members of the Association

include European Union (EU) public entities fighting cybercrime, universities and research technology

organisations, for-profit private companies, and other relevant actors in the field of the EU security

research and innovation.

The Tools4LEAs projects are a series of projects that receive a Direct Award under the ISFP

programme, and which main goal is to facilitate and promote the uptake of innovative technologies

by EU public entities fighting cybercrime. EACTDA, via the Tools4LEAs projects, aims at further

developing pre-existing assets, mainly from EU-funded security research and development projects,

so that they are offered with no license cost and with access to the source code to EU public entities

fighting cybercrime.

In the first Tools4LEAs project (v1; Jul’21 to Jun’23), the focus was on designing and setting up the

infrastructures, processes, and governance / decision-making mechanisms, whilst delivering the first

set of “fully-tested and operational-ready” tools via Europol’s Tool Repository. Though 11 tools were

further developed in the v1 project, it is expected that 3 of them will not be released to their targeted

audience as they do not pass the pre-established quality threshold of “operational-ready”. Also, an

End-User Advisory Board (EUAB) composed as of Jul’23 by 23 members from 14 EU member states

and co-chaired by two Europol units (EC3 and Innovation Lab) was established and it is the body

responsible for identifying and prioritising end-user needs and which has veto right over the decisions

done by EACTDA/Tools4LEAs with regard to the tool development roadmap.

In the second Tools4LEAs project (v2; Jul’23 to Jun’25), it is proposed to double the number of tools

delivered. Also, the repository of tools implemented in v1, and currently used to host the results of

the Tools4LEAs projects, will be enhanced and reused to host the results of EU-funded security

research projects (when relevant in the field of cybercrime). EACTDA will play the role of custodian of

these results, and the technical, IPR, and administrative aspects needed to create this new repository

of security research results will be put in place. In addition, the v2 project will include a pilot to proof

the concept of initial and limited support&maintenance periods for a selection of tools. Besides, a

pilot of the concept of EACTDA National Nodes (NN) will be included, with nodes planned in Lithuania,

France, Spain, and maybe one or two additional ones. Also, a platform for end-users to evaluate online

tools will be implemented. Finally, the v2 project will include activities to further build the community

of Tools4LEAs stakeholders and to promote the creation and/or adoption of technical blueprints, and

in general, of commonly accepted best practices.

1.3. Main objective of this document

This deliverable is part of Task 3.9 of the Tools4LEAs-v2 project, which definition is as follows:

T3.9 - Tools packaging, release and delivery

This task includes all the activities related to packaging, releasing and delivering (distributing) the

tools after they have been successfully demonstrated and evaluated

D3.17 Tools packaging, release and delivery handbook

Page 5 of 48
The Tools4LEAs project(s)

The main objective of the deliverable is to serve as a handbook for EACTDA Secretariat staff as well as

for those EACTDA members participating in “last-mile” development projects as seconded personnel

to EACTDA when working on the packaging, release, and delivery of software products.

In addition, the deliverable has been marked as public, so that it is shared openly with the community.

By doing it so, it is intended to provide greater visibility of the EACTDA DevSecOps practices,

particularly on these three aspects (packaging, release, and delivery of software products), and

including considerations that are specific to the software that is produced with the public entities

fighting cybercrime as their main targeted end-users.

1.4. Relation to other deliverables

This deliverable is closely related to the following deliverables:

• D3.18. Report on tools packaging, release and delivery activities: The activities reported in

D3.18 should reflect the considerations presented in this deliverable D3.17.

• In addition, all WP3 deliverables are related to this deliverable, in the sense that they all refer

to different phases and activities within the DevSecOps cycle of the “last-mile” development

projects that are part of the Tools4LEAs-v2 project.

1.5. Structure of the deliverable

Section 2 of this document defines the Packaging phase of the DevSecOps cycle, it presents the

processes involved in that phase, and it concludes with some specificities that apply to the Tools4LEAs-

v2 project.

Section 3 of this document defines the Release phase of the DevSecOps cycle, it presents the processes

involved in that phase, and it concludes with some specificities that apply to the Tools4LEAs-v2

project.

Section 4 of this document defines the Delivery phase of the DevSecOps cycle, it presents the

processes involved in that phase, and it concludes with some specificities that apply to the Tools4LEAs-

v2 project.

Finally, section 5 summarises which is the goal and key aspects of this document, it acknowledges that

there is still work to be done to improve the document, and it presents some of the areas of future

work that have already been identified.

D3.17 Tools packaging, release and delivery handbook

Page 6 of 48
The Tools4LEAs project(s)

2. Packaging of tools

2.1. Definition

This phase includes building and integration of the different components of the software system/solution being developed. This is a phase that it repeats

itself each time that a development team prepares a computer executable of its software to the development team, so it is a phase that is usually automated

as much as possible. The processes within this phase are compilation, which is the process of converting source code files into standalone software artefact(s)

that can be run or executed on a computer, and the build documentation (or creation of the build notes).

When this phase is automated, it is common to include a testing process to ensure the quality of the final product before it is released, this process includes

two parts of testing known as static testing and dynamic testing. Static testing is an approach to testing that consists of performing an analysis of the

product's source code using a static code analysis tool to identify its security flaws and possible vulnerabilities without executing it. On the other hand,

dynamic testing is an approach to testing that consists of performing tests by executing the source code of the product; in a build automation, this approach

is taken by running automated tests belonging to different test phases (e.g., integration, regression and/or smoke tests) on test environment(s) that are

prepared as much as possible to resemble the real scenario where the software is also "packaged", "released", "delivered" and "deployed".

2.2. Processes involved

2.2.1. Compilation

 DevOps aspects Security considerations Fighting cybercrime domain
considerations

Description

Compilation in software development
means to transform a program
written in a high-level programming
language from source code into
object code or machine code that is
used to create the executable
programme that is compliant with its
targeted platform/machine.

The compilation process itself can raise multiple
security issues when transforming the source code
from its high-level language to a lower-level one
(object/machine code). There is an emerging area of
research around the concept of secure compilation.
Secure compilation aims to protect high-level
language abstractions in compiled code, even
against adversarial low-level contexts, and to allow
sound reasoning about security in the source

-

D3.17 Tools packaging, release and delivery handbook

Page 7 of 48
The Tools4LEAs project(s)

Also, note that in the context of a
CI/CD pipeline testing activities can be
linked to the build process (i.e.,
smoke test).

language by: (1) identifying and formalizing
properties that secure compilers must possess; (2)
devising efficient enforcement mechanisms; and (3)
developing effective formal verification
techniques.

Also, the source code as well as the object/machine
code can be analysed to detect vulnerabilities. Static
Application Security Testing (SAST) is a technique
that focuses precisely on these matters. Scans of the
code can be done early in development, aiding the
developers to identify problematic code locations
and suggesting solutions. These scans do not
require executing the code, and they can be easily
automated. However, there are some drawbacks
such as for example that it is important to keep an
eye on false-positives. Also, SAST has a strong
dependency on the source code programming
language. And it is also important to note that not
all type of vulnerabilities can/are detected with this
technique.

Roles & responsibilities Developers are responsible for this
process.

Testers and developers are responsible for this
process.

-

Inputs • The source code

• The software versioning policy
(and previous build’s identifier)

• The source code -

Outputs • The object code or machine code
that is used to create the
executable programme.

• Static code analysis report -

D3.17 Tools packaging, release and delivery handbook

Page 8 of 48
The Tools4LEAs project(s)

Benefits An executable programme, which is
the output of the compilation process
can provide the following benefits:

• Better performance.

• Reduced system load.

• Protection by obscurity of the
source code of the programme.

• Better portability of compiled
programs (within the
targeted/supported platform/s).

A static code analysis report gives as benefits:

• Better understanding of the source code.

• Early defects detection.

• Cheap to conduct it.

• Helps to reduce the technical debt of a
software product.

-

Exchange data formats • Executable formats (exe, app,
binary executable scripts, ...)

• Software library formats (dll, o-
files, dylibs, ...)

• Build file (YAML, jenkinsfile,
dockerfile, makefile, ...)

• Plain text structured files (XML, CSV, JSON, ...) -

Taxonomies,
ontologies, …

• Dynamic compilation: This
process translates the code to
machine code at runtime or
before executing it. It is
commonly used in JIT compilation
and dynamic language
environments.

• Static compilation: This process
translates the code to machine
code at compile time, creating an
executable binary file.

• Code smells: A code smell is known as a
characteristic that it can indicate a deeper
problem in the source code. What or what not
it is a code smell varies depending on the
language, the developer or the development
methodology.

• Static testing: Method of debugging where the
source code is automatically examined without
having to execute it to assure that it is
compliant, safe, and secure.

-

Standards • IEEE 2675-2021 IEEE Standard for
DevOps: Building Reliable and
Secure Systems Including

- -

D3.17 Tools packaging, release and delivery handbook

Page 9 of 48
The Tools4LEAs project(s)

Application Build, Package, and
Deployment

Techniques • Continuous Integration (CI) and
Continuous Delivery (CD), also
known and CI/CD, to support
automation in building, testing
and deployment of applications.

• SAST: There are three basic types of SAST
testing: source code analysis, byte code
analysis, and raw binary code analysis. SAST
security solutions can be integrated directly into
the development environment, allowing
developers to fix issues before they pass into
the next phase of the SDLC. Secure Compilation

-

Tools Type or category of tools Key features Commonly used open-source tools

SAST tools Analyse the source and/or the object
code to detect known vulnerabilities and
to propose fixes

SonarQube; MegaLinter

Vulnerabilities and
dependencies tracking

Vulnerability detection, full-stack
inventory, impact analysis, policy
evaluation, outdated version detection,

Dependency Track; Syft; Grype

Compiling tools Automatization system to build mobile
apps, microservices and software from
source code, Task runners

Gradle; Apache Maven; PyBuilder; Grunt

https://www.sonarsource.com/products/sonarqube/
https://megalinter.io/latest/
https://dependencytrack.org/
https://github.com/anchore/syft
https://github.com/anchore/grype
https://gradle.org/
https://maven.apache.org/
https://pybuilder.io/
https://gruntjs.com/

D3.17 Tools packaging, release and delivery handbook

Page 10 of 48
The Tools4LEAs project(s)

2.2.2. Build documentation and packaging

 DevOps aspects Security considerations Fighting cybercrime domain
considerations

Description

When a new build is created it has to
be prepared to be transfered to the
testing processes. This requires
documenting and packaging the build
in a way that it includes all the
necessary elements for those that are
going to test it.

A build identifier, the source code
(including dependencies and
libraries), and the executable
programme are three elements that
must be part of the build package. In
addition, there are other elements
which can be provided, such as:

• The build notes (specifying what
is new and/or what has changed
from previous builds, which are
the known issues/errors that
have not been fixed yet, etc.)

• Updated versions of the
installation and/or user manuals

• Test reports (including security
related, such as SAST test reports,
and other type of tests, such as
unit

Creating a build for a piece of software has a
number of security issues that need to be covered
in order to ensure that the final package does not
contain something that should not be distributed.
Therefore, during this process, all components of
the package must be identified to avoid further
problems.

The development team is mainly responsible for
this task, with the support of the testing team to
check the contents in case something sensitive
could be released that has not passed the security
filters in place. Among the elements that can be

identified as sensitive, it can find:
• Connection strings of services used for

development and stored in environment
files or hard-coded in the source code.

• Test or any kind of data related to
individuals or real entities.

• Modules of the source code that must not
be shared because of an IPR agreement or
other security reasons given by the
development team.

-

Roles & responsibilities • The Developers are responsible
for this process.

• The Developers and Testers are responsible for
this process.

-

D3.17 Tools packaging, release and delivery handbook

Page 11 of 48
The Tools4LEAs project(s)

• Testers can contribute by defining
their needs.

Inputs • Source code

• Executable programme

- -

Outputs • Build package, including:
o Build identifier
o Source code
o Executable programme
o Build notes
o Installation and/or user

manuals
o Test reports

- -

Benefits Properly documenting and packaging
builds so that they are prepared to be
ingested by other processes (i.e.,
testing) that depend on the build as
an input can make this transition
much efficient and less error prone.

Taking all the necessary precautions to assure that
the final package is not prepared with something
sensitive brings as the main benefit that this
problem does not involve a higher cost on the
future to mitigate.

-

Exchange data formats • Standard document formats
(.pdf, .docx, ...)

• Plain text formats (.md, .txt, .xml,
...)

• Compressed file formats (.zip,
.tar.gz, ...)

• Video formats (.mkv, .mp4, ...)

• Environment variables file (.env)

• Ignore files/folders proyect control file
(.gitignore)

-

Taxonomies,
ontologies, …

- - -

Standards • IEEE 2675-2021 IEEE Standard for
DevOps: Building Reliable and

- -

D3.17 Tools packaging, release and delivery handbook

Page 12 of 48
The Tools4LEAs project(s)

Secure Systems Including
Application Build, Package, and
Deployment

Techniques Software versioning to assign either
unique version names or unique
version numbers to unique states of
computer software, such as a new
build. There are multiple different
version number schemes, being one
of the most commonly used ones the
“semantic scheme”, which uses a
three-part numbering system:
major.minor.patch (e.g. 1.2.3) which
may or may not be suffixed with
special identifiers such as -alpha or -
rc1.

• Use of control files (e. g. gitignore) which
excludes resources that are sensitive or
unnecessary.

• Use of an environment file not shareable
for environment variables commonly
sensitive (e. g. development database
connectionstring, email server credentials)

• Reviewing existing documentation related
to sensitive parts that should not be shared
(e. g. test data related to individuals,
modules protected by security reasons).

-

Tools Type or category of tools Key features Commonly used open-source tools

Documentation
generation tools

Extracting and structuring source code
documentation, large formats exporting
(HTML, PDF, MSWord...), large most
common programming languages
supported, automatic generated UML
diagrams, fully customisable, extensions
support, cross-platform, static-site
generator

Doxygen

Static-site generator tools Engines that use text input files (such as
Markdown, reStructuredText, and
AsciiDoc) to generate static web pages.
Static sites generated by static site
generators do not require a backend
after site generation.

Jekyll; NextJS; MkDocs; Docusaurus

https://www.doxygen.nl/
https://jekyllrb.com/
https://nextjs.org/
https://www.mkdocs.org/
https://docusaurus.io/

D3.17 Tools packaging, release and delivery handbook

Page 13 of 48
The Tools4LEAs project(s)

2.3. Specificities within the Tools4LEAs project

In this case, in addition to the techniques and recommendations discussed above, we comment here on the matter according to the EACTDA’s caustics,

identifying which important elements would be indispensable to prepare and how. For a final package of a tool according to EACTDA, the following checklist

of items should be taken completely into account (unless otherwise stated) in order to proceed later with the release of the tool.

D3.17 Tools packaging, release and delivery handbook

Page 14 of 48
The Tools4LEAs project(s)

Item Sub-item y/n Observations

Documentation RELEASE notes Use the (TO BE CREATED) template

 Installation manual

 User manual

 Technical Specifications

 Technical Testing Report

 UAT report

Training materials Short presentation video

 Training course

Test/evaluation data Test data

 Test data manual Describe the content, how it has been created, …

Installation files

If no executable, add a README.txt. It is crucial to use certificates that sign

the artifact to get trusted, whether the application is a desktop or web

application. (See ANNEX II)

Source code Tool's source code

 Automated test scripts

License ETR license (from EACTDA to Europol)

SBOM SBOM file XML or JSON in CycloneDX format.

 SBOM Security analysis report PDF report of an internal use tool (e.g., DependencyTracker).

 SBOM IPR analysis report PDF report of an internal use tool called SbomIPRChecker (see ANNEX I)

Table 1. Tool package items checklist table

A final software package, according to EACTDA, is a compressed file (split or not) or a folder containing all the elements previously presented in folders

structured according to their contents and presented with the tool. In order to package these items, the following folder structure should be followed, as

shown in the figure below.

D3.17 Tools packaging, release and delivery handbook

Page 15 of 48
The Tools4LEAs project(s)

Figure 1. Tool example package folder’s structure displayed on a terminal

Once all the items are in order, the next step will be to compress the entire package folder in a unique (ToolName_vToolVersion (FINAL).zip) or multiple

part(s) (ToolName_vToolVersion (FINAL).Part-X.zip) and continue with the release process.

D3.17 Tools packaging, release and delivery handbook

Page 16 of 48
The Tools4LEAs project(s)

3. Release of tools

3.1. Definition

The release phase includes all the activities needed to prepare the software product (the package) to be distributed to its intended customers. This includes

planning, designing, and preparing all the means necessary to facilitate the installation, initial configuration, and use of the software product when in the

environments of the targeted customers. Typical examples of release artefacts are installation auxiliary tools, installation and user manuals, licence(s),

complementary services such as training or customer support. This phase repeats every time the business decides to launch a new version of the software

product to its intended customers.

The processes within this phase are release policy definition, planning, design, preparation, and release execution.

Note that not all software versions that are built become a release because only the software versions that are published or delivered to the intended end-

users/customers are considered software releases.

From a security point of view, during the release phase it is important to conduct a security readiness check to make sure that all the security tests have been

conducted as planned and that all identified vulnerabilities have been appropriately handled. No release should be completed and allowed to pass to the

delivery phase without the validation of the security readiness check. Also, during the release phase, code signing certificates should be used to digitally sign

the software product’s applications and executables (See ANNEX II), so that, when the software is deployed, the end-users can verify that the code has not

been altered or compromised by a third party. If the product has already been signed, it should be checked that the signature is correctly apply and working.

Also, during this phase, the components of the packaging are reviewed and their hashes extracted, in order to keep track of the digital fingerprint of the tool

and ensure the integrity of its components to the end-users.

D3.17 Tools packaging, release and delivery handbook

Page 17 of 48
The Tools4LEAs project(s)

3.2. Processes involved

3.2.1 Release planning

 DevOps aspects Security considerations Fighting cybercrime

domain considerations

Description

This phase involves planning,

scheduling, and controlling the

software development and delivery

process.

DevOps teams share the

responsibility for the services they

deliver, and their code. When

software developers and IT

professionals are involved in the

entire delivery lifecycle, incidents are

detected and resolved faster. This

process is followed during and after

the release process.

The key areas of the release cycle

are the following:

• Continuous exploration

• Continuous integration

• Continuous deployment

• Release on demand

• Provide mechanisms for verifying software

release integrity.

• Archive and protect each software version

release

Roles &

responsibilities

• The development team is

responsible for creating new

code or features.

 - -

D3.17 Tools packaging, release and delivery handbook

Page 18 of 48
The Tools4LEAs project(s)

• The testing team is responsible

for testing the new

code/features in a staging

environment.

• The release manager is

responsible for coordinating the

entire process and approving it

so that the product is released to

production environment.

Inputs • Product Backlog

• Stakeholder Feedback

• Market Research

• Project Constraints

 - -

Outputs • Release Plan

• Release Backlog

• Prioritized Features

• Release Roadmap

 - -

Benefits • Fewer and shorter feedback

loops.

• Faster releases.

• Enhanced Communication.

• Alignement between

development efforts and

business goals.

• Improved visibility of what to

expect in the upcoming release.

• Risk mitigation by identifying

potential risks.

 - -

D3.17 Tools packaging, release and delivery handbook

Page 19 of 48
The Tools4LEAs project(s)

Exchange data

formats

• JSON

• XML

• YAML

• CSV

• Standard Document Formats

(Word, PDF...)

- -

Taxonomies,

ontologies...

- - -

Standards • ISO/IEC/IEEE 32675:2022

• ISO/IEC 12207

• ISO/IEC 27001

• NIST SP 800-64

• DevOps Planning Standards.

Compliance and Regulations: Ensure that the

release complies with relevant industry-specific

regulations (e.g., GDPR, HIPAA) and security

standards (e.g., ISO 27001).

NIST SP 800-64: Offers guidance on security

considerations during software development and

release planning.

 -

Techniques • State/define the criteria for

success.

• Aim for minimal customer

impact

• Take advantage of the staging

environment.

• Optimise CI/CD and QA.

• Use automation whenever

possible.

• If possible, make things

immutable

Security Threat Assessment: Identify potential

security threats and risks relevant to the release.

Consider factors like the sensitivity of data,

potential attack vectors, and the impact of security

breaches.

-

D3.17 Tools packaging, release and delivery handbook

Page 20 of 48
The Tools4LEAs project(s)

Tools Type or category of

tools

Key features Commonly used open-source tools

Project Management Task management, time tracking,

analytics, reporting,

GitLab; Jira; Zoho;

CI/CD platforms Continuous integration (CI), for

Frequent merging of several small

changes into a main branch.

Continuous Delivery (CD), for

building, testing, and releasing software

with greater speed and frequency.

Continuous deployment (CD), for

adding the deployment of the code to

the continuous delivery activities.

Jenkins; Gradle; GitLab; GoCD; Buddy; Argo CD;

Spinnaker; Ansible;

https://about.gitlab.com/
https://www.atlassian.com/software/jira
https://www.zoho.com/
https://www.jenkins.io/
https://gradle.org/
https://about.gitlab.com/
https://www.gocd.org/index.html
https://buddy.works/
https://argo-cd.readthedocs.io/en/stable/
https://spinnaker.io/
https://www.ansible.com/

D3.17 Tools packaging, release and delivery handbook

Page 21 of 48
The Tools4LEAs project(s)

 3.2.2. Release design

 DevOps aspects Security considerations Fighting cybercrime

domain considerations

Description

Inside the release design process,

the methodology for the release

execution is defined.

Teams define the technical details

of the release, design the

architecture, create release-specific

requirements, and plan for any

necessary infrastructure changes.

There are different ways to plan

the release:

• Planning-based: Structured

planning, testing and deployment

of software, suitable for

large/complex projects with long

release cycles.

• Automated: Use of automated

tools and processes to manage

the entire software delivery

pipeline, ideal for organizations

with frequent and rapid releases.

• Agile: Flexible and focused on

delivering incremental changes

and continuous improvements to

releases, used in organizations

that require quick and frequent

releases, as well as adaptation.

 - -

D3.17 Tools packaging, release and delivery handbook

Page 22 of 48
The Tools4LEAs project(s)

Roles &

responsibilities

The release manager is

responsible for creating a release

design that adapts the characteristics

and requirements of the project.

Software architects, developers,

and technical leads are heavily

involved in the release design phase.

Compliance: Ensure that the release complies

with industry standards, security regulations, and

best practices.

-

Inputs A release plan. - -

Outputs • Detailed design documents.

• Technical requirements.

 - -

Benefits • Improved reliability and

stability of the releases.

• Delivery of high-quality

software releases that satisfy

the customer requirements.

• Fewer and shorter feedback

loops.

• Faster releases.

 - -

Exchange data formats • JSON

• XML

• YAML

• CSV

- -

Taxonomies,
ontologies, …

- - -

Standards - ISO/IEC 19770

- ISO/IEC 12207

OWASP Secure Software Development Lifecycle

(SSDL): Offers best practices and guidelines for

secure release design.

-

D3.17 Tools packaging, release and delivery handbook

Page 23 of 48
The Tools4LEAs project(s)

- OWASP Secure Software

Development Lifecycle (SSDL)

- DevOps Design Standards

Techniques • Definition of technical

specifications.

• Decisions on deployment

strategies.

• Identification of third-party

integrations.

Risk assessment and mitigation planning. -

Tools Type or category of

tools

Key features Commonly used open-source tools

Project Management Task management, time tracking,

analytics, reporting,

GitLab; Jira; Zoho;

CI/CD platforms Continuous integration (CI), for

Frequent merging of several small

changes into a main branch.

Continuous Delivery (CD), for

building, testing, and releasing software

with greater speed and frequency.

Continuous deployment (CD), for

adding the deployment of the code to

the continuous delivery activities.

Jenkins; Gradle; GitLab; GoCD; Buddy; Argo CD;

Spinnaker; Ansible;

3.1.1. Release preparation

 DevOps aspects Security considerations Fighting cybercrime

domain considerations

https://about.gitlab.com/
https://www.atlassian.com/software/jira
https://www.zoho.com/
https://www.jenkins.io/
https://gradle.org/
https://about.gitlab.com/
https://www.gocd.org/index.html
https://buddy.works/
https://argo-cd.readthedocs.io/en/stable/
https://spinnaker.io/
https://www.ansible.com/

D3.17 Tools packaging, release and delivery handbook

Page 24 of 48
The Tools4LEAs project(s)

Description

 During the review, the QA team

will conduct final checks to ensure the

build meets the minimum acceptable

standards and business

requirements.

This phase sets the stage for

delivering software that meets

customer expectations and operates

smoothly in a production

environment.

• Review of release plan.

• Verification of Completion.

• Testing and validation.

• Security assessment.

• Quality assurance.

• Documentation and User

manuals.

• Archiving Previous Releases.

• Final Review and Approval.

• Backup and Recovery plans.

• Stakeholder Communication.

• Final Approval.

• Monitoring and Support.

Identify vulnerabilities or possible exploits

through the Quality Tests to identify and fix them

before release or in order to communicate them to

the End Users.

Security Documentation: Create comprehensive

security documentation, including security

guidelines, best practices, and incident response

plans. All team members should be aware of and

follow these security protocols.

Cybersecurity Awareness: Conduct cybersecurity

awareness training for all team members. Human

error is a common cause of security breaches, so

educating the team is crucial.

Roles &

responsibilities

• The release manager is

responsible for conducting a

release preparation that can

D3.17 Tools packaging, release and delivery handbook

Page 25 of 48
The Tools4LEAs project(s)

achieve a final product that

meets the requirements and

prevents possible post

release problems. Also needs

to adapt to the characteristics

and requirements of the

project. Communicate the

release schedule to

stakeholders.

• The QA team to conduct the

final tests. Identify areas for

improvement in the release

process. Verify that the

release aligns with the

organization's quality goals.

• The Release Advisory Board

(RAB) will approve or reject

the release based on business

and technical considerations.

Inputs • Release plan.

• Code Repository.

• Defect Reports.

• Test Cases and Test Data.

• Release Documentation.

• Quality Assurance (QA)

Reports.

• Requirements.

• Operational Documentation.

Security Findings and Vulnerability Assessments:

Reports from security assessments and vulnerability

scans identify potential security issues. These

findings must be addressed and resolved before the

release to ensure the software's security.

D3.17 Tools packaging, release and delivery handbook

Page 26 of 48
The Tools4LEAs project(s)

• Dependencies and Third-

Party Components.

• Historical data.

• Feedback from Pre-release

testing.

Outputs • Release Package.

• Release notes.

• Deployment plan.

• Operational Runbooks.

• Test reports.

• Security Documentation.

• Database Change Scripts.

• Approval and Sign-off.

• Backup and Rollback Plans.

• Quality Assurance (QA)

Reports.

• Validation of Compliance.

• Historical Data.

• Feedback from Pre-release

Testing.

• Release Package Distribution.

• Operational Team Training.

• Lessons Learned Report.

Benefits • Enhanced reliability.

• Reduced Deployment Risks.

• Better Security and

Compliance.

D3.17 Tools packaging, release and delivery handbook

Page 27 of 48
The Tools4LEAs project(s)

• Optimized Deployment.

• Customer Satisfaction.

Exchange data formats - - -

Taxonomies,
ontologies, …

- - -

Standards • ISO/IEC/IEEE 32675:2022

• ISO/IEC 20000

• ITIL (Information Technology

Infrastructure Library)

• ISO/IEC 27001

• IEEE 12207

• NIST SP 800-53

• Industry-Specific Standards

• Customized Internal

Standards

The ISO/IEC 27001 is the international standard

for information security management systems. It is

relevant to release preparation as it emphasizes the

importance of security in the release process.

Complying with ISO/IEC 27001 helps address

security considerations during release preparation.

NIST SP 800-53: Provides security controls and

guidelines for the preparation phase, addressing

security considerations.

Key Activities • Test planning and execution,

including unit, integration,

and user acceptance testing.

• Security testing and

vulnerability scanning.

• Performance and scalability

testing.

• Documentation creation,

including release notes and

installation guides.

• Deployment planning and

coordination.

D3.17 Tools packaging, release and delivery handbook

Page 28 of 48
The Tools4LEAs project(s)

Tools Type or category of

tools

Key features Commonly used open-source tools

Project Management Task management, time tracking,

analytics, reporting,

GitLab; Jira; Zoho;

CI/CD platforms Continuous integration (CI), for

Frequent merging of several small

changes into a main branch.

Continuous Delivery (CD), for

building, testing, and releasing software

with greater speed and frequency.

Continuous deployment (CD), for

adding the deployment of the code to

the continuous delivery activities.

Jenkins; Gradle; GitLab; GoCD; Buddy; Argo CD;

Spinnaker; Ansible;

3.1.2. Release execution

 DevOps aspects Security considerations Fighting cybercrime

domain considerations

https://about.gitlab.com/
https://www.atlassian.com/software/jira
https://www.zoho.com/
https://www.jenkins.io/
https://gradle.org/
https://about.gitlab.com/
https://www.gocd.org/index.html
https://buddy.works/
https://argo-cd.readthedocs.io/en/stable/
https://spinnaker.io/
https://www.ansible.com/

D3.17 Tools packaging, release and delivery handbook

Page 29 of 48
The Tools4LEAs project(s)

Description

Once the release has been

correctly planned, designed, and

prepared, it comes the release

execution phase.

The main goals of the release

execution are:

• Run the appropriate security

readiness tests (if needed), to

validate that the build

package is appropriate to be

released.

• Extract the hashes of the

prepared package to ensure

the security of the tool

delivery and tracking.

The readiness and security tests are important to

check that the release version of the tool does not

involve any vulnerabilities or exploits that can be

used to attack the End Users.

The signing of the product with the certificate is

also important for the End Users to trust that the

delivered software has not been compromised or

altered by external sources.

Also, the extraction of the hashes to keep track

of the tool and avoid third parties to deliver a

compromised version of it. By keeping track of the

hash end-users can ensure that the downloaded

product is original and safe to use.

Roles &

responsibilities

• The release manager is

responsible for supervising

the execution of the release

and reviewing that the final

release product is ready for

delivery.

• The testing team is

responsible for testing the

readiness and security of the

product and sign them

digitally with the certificate.

D3.17 Tools packaging, release and delivery handbook

Page 30 of 48
The Tools4LEAs project(s)

Inputs Build package including all the

deliverables.

Outputs The components of the build

package correctly tested, and ready

to make the delivery to production.

Benefits • Discard build versions that do

not satisfy with the

requirements to become a

final release product to be

delivered to the End Users.

• Smooth and controlled

deployment.

• Real-time issue detection.

• Satisfied end-users.

Detection of vulnerabilities of the tool in order to

report them for future enhancements or updates of

the tool and to report them to the End-users.

Exchange data formats - - -

Taxonomies,
ontologies, …

- - -

Standards • ISO/IEC 12207

• ISO/IEC 19770

• NIST SP 800-53

• Continuous Monitoring

Standards

NIST SP 800-53: Includes controls for monitoring

and securing the execution phase of the release.

Techniques • Testing and quality assurance

involve ensuring that the

software release meets the

required quality standards. It

includes activities such as

D3.17 Tools packaging, release and delivery handbook

Page 31 of 48
The Tools4LEAs project(s)

functional testing, regression

testing, load testing, and user

acceptance testing (UAT).

• Deployment strategies.

• Real-time monitoring.

Key Activities • Deployment of the release

package to production

servers.

• Monitoring for any issues or

incidents during deployment.

• Immediate response to any

deployment problems.

• Verification and validation of

the deployed release.

• Transition to post-release

monitoring and support.

Tools Type or category of

tools

Key features Commonly used open-source tools

Project Management Task management, time tracking,

analytics, reporting,

GitLab; Jira; Zoho;

CI/CD platforms Continuous integration (CI), for

Frequent merging of several small

changes into a main branch.

Continuous Delivery (CD), for

building, testing, and releasing software

with greater speed and frequency.

Jenkins; Gradle; GitLab; GoCD; Buddy; Argo CD;

Spinnaker; Ansible;

https://about.gitlab.com/
https://www.atlassian.com/software/jira
https://www.zoho.com/
https://www.jenkins.io/
https://gradle.org/
https://about.gitlab.com/
https://www.gocd.org/index.html
https://buddy.works/
https://argo-cd.readthedocs.io/en/stable/
https://spinnaker.io/
https://www.ansible.com/

D3.17 Tools packaging, release and delivery handbook

Page 32 of 48
The Tools4LEAs project(s)

Continuous deployment (CD), for

adding the deployment of the code to

the continuous delivery activities.

3.2. Specificities within the Tools4LEAs project

For EACTDA’s release process, once the tool package has been generated and it is ready to be released, some hashes must be generated to ensure the integrity

of the data within the package. To do so, two different scripts have been prepared. The first one obtains the hash for each file inside the folder structure

(SHA256 format) and lists them in a .csv file, which is later converted into a .ods file. The following image shows the table format and the type of information

in it.

Once the tool package is ready to be released, it is saved inside a zip file. At this point, a second script has been prepared that extracts the hash for that zip

file with the format displayed in the following image (txt file):

D3.17 Tools packaging, release and delivery handbook

Page 33 of 48
The Tools4LEAs project(s)

4. Delivery of tools

4.1. Definition

The delivery phase includes the activities needed to effectively distribute the software product to its targeted customers. It is the stage in the software

development and deployment lifecycle where application code, infrastructure changes, or updates are prepared for production release. It is a pivotal part of

the DevSecOps pipeline that integrates security practices, automation, and collaboration into the delivery process. This phase repeats every time a software

release is ready and the business decides to distribute it to its targeted customers. It is important to note that the targeted customer base can be segmented,

and different objectives and distribution means (e.g., communication and/or dissemination materials and channels) can be defined for each segment.

The processes within this phase are planning, preparation, and execution of the software product distribution.

From a security point of view, secure delivery focuses on making sure that the distribution of the software product to its targeted customers is done in a

secure way, by secure channels, minimising the risk of unauthorised (or unwanted) access to the software product and making sure that the software product

is not compromised in the process. It emphasizes continuous testing, automation, and security measures to minimize risks and maintain the integrity of

applications in a dynamic and fast-paced development environment.

4.2. Processes involved

4.2.1. Delivery planning

 DevOps aspects Security considerations Fighting cybercrime domain
considerations

Description

This stage involves the creation of a
detailed plan to guide the delivery
process. This plan outlines how the
delivery of the product will be
conducted (who will receive the
product, the method that will be used
to deliver it and where will it be
uploaded)

-

-

D3.17 Tools packaging, release and delivery handbook

Page 34 of 48
The Tools4LEAs project(s)

Roles & responsibilities • The Delivery Manager, as the
person responsible for the
coordination of the whole
process and deciding about the
delivery method to be used.

• The Delivery Manager is responsible for this
role.

-

Inputs • Released product package. • As described during the Packaging phase, a
Static Application Security Testing (SAST)
analysis can help verifying that the final code of
the product is ready to be released and that the
whole product package is ready to be uploaded
to the delivery platform.

-

Outputs • Organisation’s delivery plan. - -

Benefits • Higher security in the delivery
process.

• Increases the speed in the
delivery of the product to the
target user.

• Having a proper delivery plan prepared
beforehand will help in assuring that the
product is delivered to the customers (end-user
in this case) in time or within the promised
delivery window.

-

Exchange data formats • JSON

• YAML

• XML

• CSV

• TOML

• HCL

• OpenAPI/Swagger

• Custom Data Formats

• Protocol Buffers

• Custom API Endpoints

• In DevSecOps, data exchange formats should
consider security from multiple angles,
including data confidentiality, integrity,
authentication, and authorization. Additionally,
integrating encryption and digital signatures
can further enhance the security of data
exchange within the pipeline. The choice of
data format should align with the organization's
specific security requirements and best
practices.

-

D3.17 Tools packaging, release and delivery handbook

Page 35 of 48
The Tools4LEAs project(s)

Taxonomies,
ontologies, …

• Vulnerability taxonomy: It helps
in prioritizing vulnerabilities and
planning for remediation.

• Compliance taxonomy: It helps in
aligning the software delivery
process with relevant compliance
mandates (GDPR, ISO, W3C).

• Threat taxonomy: It helps in
identifying and mitigating
security threats during delivery
planning (CVE).

• Data Sensitivity Taxonomy: It
classifies data based on its
sensitivity level, regulatory
implications and privacy
considerations. It helps in
planning for data protection and
privacy measures during delivery.

-
-

Standards • Information Technology
Infrastructure Library (ITIL).

-

Techniques • Agile planning: When working
Agile the user can plan the deliver
with a fixed release date or with
an open release date.

• Make sure that there is proper documentation
that describes the delivery process. When there
is a lost of track of process documentation, the
user cannot ensure that all security protocols
are being followed because the reference
documentation might not exist, or storing it in a
consistent manner was not a priority.

-

Tools Type or category of tools Key features Commonly used open-source tools

D3.17 Tools packaging, release and delivery handbook

Page 36 of 48
The Tools4LEAs project(s)

Project Management Task management, time tracking,
analytics, reporting,

GitLab; Jira; Zoho;

CI/CD platforms Continuous integration (CI), for

Frequent merging of several small

changes into a main branch.

Continuous Delivery (CD), for building,

testing, and releasing software with

greater speed and frequency.

Continuous deployment (CD), for adding
the deployment of the code to the
continuous delivery activities.

Jenkins; Gradle; GitLab; GoCD; Buddy; Argo CD;

4.2.2. Delivery preparation

 DevOps aspects Security considerations Fighting cybercrime domain
considerations

Description

This stage involves the preparation,
implementation and configuration of
the environments that will be used to
upload the product, so that then it can
be ready to be downloaded by the
end-users.
This stage also involves preparing the
communication with the end-users
and deciding the mechanisms that
will be applied in order to ensure that
they will have the necessary tools and

• Aim for immutable infrastructure, where
deployments are consistent, repeatable, and
not subject to change once deployed. This
reduces the attack surface and enhances
security.

-

https://about.gitlab.com/
https://www.atlassian.com/software/jira
https://www.zoho.com/
https://www.jenkins.io/
https://gradle.org/
https://about.gitlab.com/
https://www.gocd.org/index.html
https://buddy.works/
https://argo-cd.readthedocs.io/en/stable/

D3.17 Tools packaging, release and delivery handbook

Page 37 of 48
The Tools4LEAs project(s)

configurations ready to receive the
product.

Roles & responsibilities • The Delivery Manager, as the
person responsible for the
coordination of the whole
process and verifying that the
selected delivery method has
been successfully implemented,
meaning the product package is
ready to be delivered.

• The Systems Administrator (also
tester in this case) as the person
responsible for implementing and
configuring the system/platform
that will be later used to upload
and distribute the product
package.

• Implement access controls and authentication
mechanisms.

• Apply patches and updates to keep systems
secure.

• Ensure that the infrastructure has been
configured securely.

-

Inputs • Organisation’s delivery plan. - -

Outputs • Delivery system/platform - -

Benefits • Higher control of the systems and
services that are being prepared
to deliver the product package.

• Higher control of the
implemented access method for
the end-users.

• Faster and More Reliable Delivery.

• Faster Incident Response: With a well-prepared
incident response plan in place during delivery
preparation, organizations can respond more
effectively to security incidents, minimizing
their impact and downtime.

-

Exchange data formats • JSON

• YAML

• XML

• CSV

• The choice of data exchange format depends on
the specific requirements of the organization,
the tools and systems in use, and the need for
compatibility and interoperability. Using

-

D3.17 Tools packaging, release and delivery handbook

Page 38 of 48
The Tools4LEAs project(s)

• TOML

• HCL

• OpenAPI/Swagger

• Custom Data Formats

• Protocol Buffers

• Custom API Endpoints

standardized and well-documented formats
enhances the efficiency of the DevSecOps
pipeline and promotes collaboration between
development, security, and operations teams.

Taxonomies,
ontologies, …

• Artifact and Configuration
Taxonomy: It classifies software
artifacts (containers, deployment
scripts, etc) and configuration
items based on their purpose and
their impact.

• Change Management Taxonomy:
it organizes and categorizes
different types of changes,
including routine updates,
security patches configuration
changes, and major releases. It
helps in tracking changes during
delivery preparation.

• Security control taxonomies classify and
categorize various security controls and
measures that can be applied to mitigate risks,
vulnerabilities, and threats. This helps in
selecting the most appropriate controls for the
delivery preparation process.

-

Standards • Information Technology
Infrastructure Library (ITIL).

- -

Techniques • Zero Trust Security Model: Apply
the principle of least privilege and
the zero trust model, where
access to systems and data is
restricted to only what is
necessary for a given user or
system to perform its job.

• Zero Trust relies heavily on strong
authentication mechanisms such as multi-
factor authentication (MFA) and continuous
authentication. Users and devices are required
to prove their identity and trustworthiness
before accessing resources or systems.

-

Tools Type or category of tools Key features Commonly used open-source tools

D3.17 Tools packaging, release and delivery handbook

Page 39 of 48
The Tools4LEAs project(s)

Project Management Task management, time tracking,
analytics, reporting,

GitLab; Jira; Zoho;

CI/CD platforms Continuous integration (CI), for

Frequent merging of several small

changes into a main branch.

Continuous Delivery (CD), for building,

testing, and releasing software with

greater speed and frequency.

Continuous deployment (CD), for adding
the deployment of the code to the
continuous delivery activities.

Jenkins; Gradle; GitLab; GoCD; Buddy; Argo CD;

4.2.3. Delivery execution (or release distribution)

 DevOps aspects Security considerations Fighting cybercrime domain
considerations

Description

This stage involves the upload of the
product package to the previously
implemented and prepared
environments.
This stage also involves
communicating the end-users that
the package is finally uploaded to the
defined platform and that it is ready
to be retrieved by them.
Besides, this stage also involves
verifying that the end-users have

• Ensure that sensitive data is handled securely
and is encrypted both in transit and at rest.
Implement access controls and data
minimization techniques to protect user
privacy.

-

https://about.gitlab.com/
https://www.atlassian.com/software/jira
https://www.zoho.com/
https://www.jenkins.io/
https://gradle.org/
https://about.gitlab.com/
https://www.gocd.org/index.html
https://buddy.works/
https://argo-cd.readthedocs.io/en/stable/

D3.17 Tools packaging, release and delivery handbook

Page 40 of 48
The Tools4LEAs project(s)

successfully managed to obtain the
product package.

Roles & responsibilities • The Delivery Manager, as the
person responsible for the
coordination of the upload of the
product package to the
environment and for the later
communication with the end-
users.

• The Systems Administrator as the
person responsible for uploading
the product package to the
system/platform and ensuring
that the environment is ready to
be used by the end-users

• The end-users, as the people
responsible for accessing the
system/platform and correctly
downloading the product
package.

• Ensure that the infrastructure has been
configured securely.

• Apply patches and updates to keep systems
secure.

• End-users shall:
o Follow security policies and guidelines

when using the service/platform.
o Report security incidents and

vulnerabilities promptly.
o Participate in security awareness

training.

-

Inputs • Delivery system/platform - -

Outputs • Product package successfully
delivered.

- -

Benefits • Ensuring that the product
package is received by the
intended users with no issues.

• By proactively addressing security concerns
during delivery preparation, organizations can
mitigate security risks and reduce the likelihood
of security breaches, data leaks, or other
security incidents.

• Security checks and tests integrated into the
CI/CD pipeline ensure that only secure and

-

D3.17 Tools packaging, release and delivery handbook

Page 41 of 48
The Tools4LEAs project(s)

compliant code is promoted to production. This
leads to faster and more reliable software
delivery with fewer post-release issues.

Exchange data formats • Container Images: Container
image formats like Docker's .tar
files or Open Container Initiative
(OCI) formats are essential for
distributing containerized
applications.

• Package Managers: Package
manager formats such as RPM
(Red Hat Package Manager) or
DEB (Debian package) are used
for distributing software
packages and libraries in Linux
environments.

• ZIP archives: ZIP archives are
commonly used to bundle and
distribute files, applications, and
related assets in a compressed
format.

• Artifact Repositories: Artifact
repository formats like JFrog
Artifactory and Sonatype Nexus
store and distribute binary
artifacts, including libraries,
dependencies, and application
builds.

• Custom Data Formats: In some
cases, organizations may create
custom data exchange formats
tailored to their specific release

• Git Repositories: Git repositories can be used to
distribute code and version-controlled assets.
Git supports both code and documentation
distribution.

• HTTP/HTTPS: These protocols are commonly
used for distributing files, documents, and
artifacts securely over the internet. They are
widely used for software updates and patches.

• Blockchain: Blockchain-based formats can be
used for secure and immutable distribution of
software updates, ensuring the integrity of the
delivered code.

• P2P (Peer to Peer) Networks: P2P networks may
employ their own data exchange formats for
distributing software updates and patches in a
decentralized manner.

• FTP (File Transfer Protocol): It is a network
protocol used for transferring files, and it can be
employed for distributing software and related
files to remote servers and locations.

• CDN (Content Delivery Network): CDNs often
use their own data formats for distributing
content efficiently to users worldwide. This can
include caching strategies and content
optimization.

-

D3.17 Tools packaging, release and delivery handbook

Page 42 of 48
The Tools4LEAs project(s)

distribution needs. These formats
can be optimized for their unique
use cases.

Taxonomies,
ontologies, …

• Authentication and Authorization
Ontology: It categorizes different
authentication and authorization
mechanisms. It helps in planning
the access control during delivery
preparation (MFA, role-based and
attribute-based access control,
single sign-on, OAuth, SAML,
OpenID Connect, LDAP).

• Distribution Channel Taxonomy:
It categorizes distribution
channels based on their security
features and usage, such as public
and private repositories, and
content delivery networks
(CDNs). It helps in selecting the
most secure distribution
channels.

• Secure Transport Protocol
Ontology: It defines secure
transport protocols (HTTPS, SFTP,
SCP, FTPS, SMTPS, IMAPS, POP3S,
IPsec, SSH) and categorizes them
based on their encryption
strength and authentication
mechanisms. It helps in choosing
secure transport methods for
distribution.

• These taxonomies and ontologies serve as a
guide in the selection of appropriate
distribution channels, methods and verification
processes to minimize security risks.

-

https://en.wikipedia.org/wiki/Multi-factor_authentication
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Attribute-based_access_control
https://en.wikipedia.org/wiki/Single_sign-on
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
https://auth0.com/intro-to-iam/what-is-openid-connect-oidc
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Content_delivery_network
https://www.cloudflare.com/learning/ssl/what-is-https/
https://en.wikipedia.org/wiki/SSH_File_Transfer_Protocol
https://en.wikipedia.org/wiki/Secure_copy_protocol
https://en.wikipedia.org/wiki/FTPS
https://en.wikipedia.org/wiki/SMTPS
https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
https://en.wikipedia.org/wiki/Post_Office_Protocol
https://aws.amazon.com/what-is/ipsec/?nc1=h_ls
https://en.wikipedia.org/wiki/Secure_Shell

D3.17 Tools packaging, release and delivery handbook

Page 43 of 48
The Tools4LEAs project(s)

• Secure Content Delivery
Taxonomy: It categorizes CDNs
and content delivery methods
based on their security controls,
distributed denial of service
(DDos) mitigation capabilities,
and secure caching mechanisms.

Standards • Information Technology
Infrastructure Library (ITIL).

- -

Techniques • Agile Delivery: Some of its
benefits are:

o Teams are kept small and
iterations short.

o Feedback from
customers is fast.

o Business priorities are
value-based.

o Users are engaged in the
refining of end-product
requirements.

• The following methods can help ensuring and
controlling that the product package can only
be received by the intended users:

o Use of PGP keys.
o Preparation of VPN credentials.
o Identification of delivery channels. One

of the possible and most secure
delivery channels is a Secure File
Transfer Protocol (SFTP). Also, the
credentials to access the server will be
required.

-

Tools Type or category of tools Key features Commonly used open-source tools

Project Management Task management, time tracking,
analytics, reporting,

GitLab; Jira; Zoho;

CI/CD platforms Continuous integration (CI), for

Frequent merging of several small

changes into a main branch.

Continuous Delivery (CD), for building,

testing, and releasing software with

greater speed and frequency.

Jenkins; Gradle; GitLab; GoCD; Buddy; Argo CD;

https://en.wikipedia.org/wiki/Denial-of-service_attack
https://about.gitlab.com/
https://www.atlassian.com/software/jira
https://www.zoho.com/
https://www.jenkins.io/
https://gradle.org/
https://about.gitlab.com/
https://www.gocd.org/index.html
https://buddy.works/
https://argo-cd.readthedocs.io/en/stable/

D3.17 Tools packaging, release and delivery handbook

Page 44 of 48
The Tools4LEAs project(s)

Continuous deployment (CD), for adding
the deployment of the code to the
continuous delivery activities.

4.3. Specificities within the Tools4LEAs project

For EACTDA’s delivery process, two methods (repositories) have been defined and implemented. The first one consists on uploading the release package to

EACTDA’s repository of tools (see Annex III). Each project developed under the Tools4LEAs v2 projects will contain an entry inside that repository where

everything related to the project will be added, including the zip file with the release package. The internal structure of the package has already been described

during the “Packaging of tools” section.

Every authorised end-user that requests access to the release package will receive an email with instructions on how to connect to a VPN. This will allow the

user to access EACTDA’s repository of tool. For that purpose, the user will have to specify its email and send its public PGP key, so that the instructions can

be sent via an encrypted message.

The second method involves the use of a SFTP server. SFTP (Secure File Transfer Protocol) is a file transfer protocol that leverages a set of utilities that provide

secure access to a remote computer to provide secure communications. It is considered by many to be the optimal method for secure file transfer. It makes

use of SSH (Secure Socket Shell or Secure Shell) and is often also referred to as 'Secure Shell File Transfer Protocol'.

Therefore, the release package will be uploaded to the SFTP server by the system administrator. The end-user will only have to connect to the server and

they will automatically be redirected to the location of the release package (zip file). To connect to the SFTP server, the end-user will have to install and

connect to a VPN server (the credentials will be provided by EACTDA). Once that step is fulfilled, he/she will have to the enter the user credentials to connect

to SFTP. Each time a new version of a tool has been released, the tool in question will be uploaded to the SFTP server with its newest version.

D3.17 Tools packaging, release and delivery handbook

Page 45 of 48
The Tools4LEAs project(s)

5. Summary

5.1. Conclusion

In this document we have introduced the concepts of packaging, releasing and delivering software

packages, and for each of them we have presented the processes (steps) that are to be conducted in

the Tools4LEAs project. When defining each process, a description of the process, the typical roles and

responsibilities of the persons affected, inputs and outputs, benefits, exchange data formats,

taxonomies and ontologies, standards, techniques, and tools (categories and some relevant example

open-source tools) are presented with three points of view: DevOps, Security, and Fighting Cybercrime

specific considerations.

This document therefore serves as the handbook on these matters that is to be used in the Tools4LEAs

project.

5.2. Evaluation

Though the document will be maintained and updated on a regular basis (at least yearly), it is

considered to be ready to serve as the handbook on packaging, releasing, and delivering software

products for the Tools4LEAs-v2 project.

5.3. Future work

As previously stated, this document will be updated on a regular basis (at least yearly), though the

updates will be for internal use and are not planned to be submit

D3.17 Tools packaging, release and delivery handbook

Page 46 of 48
The Tools4LEAs project(s)

ANNEX I – Overview of the SbomIPRChecker

SbomIPRChecker is a software internally developed which gathers all the licensing information related

to the third-party components that conform a software product using a SBOM file according to the

CycloneDX format. This internal tool was developed according to the need for a tool that would

acquire licences for components that did not have them, making an IPR analysis in the process to verify

if some component presents licensing problems.

To generate a SBOM report using the tool, it should run the application, go to the “Analyze SBOMs

pane”, check the “Complete licenses” checkbox, select an input SBOM file and then press on the

“Analyze SBOM” button, by default the reporting format will be HTML (preferred option by

EACTDA). The analysis process time can vary depending the physical size of the SBOM file and how

many components do not present a license, the “Complete licenses” checkbox increases the analysis

time due to API calls made to retrieve component licenses.

Once the SBOM report is generated, the next step will be to print as a PDF the resultant HTML. This

can be achieved by open the SBOM HTML report and click on the print button located at the bottom

of the document. This way to get SBOM reports can vary depending on the version of this tool, but

this task will be always performed by this tool in a similar way.

D3.17 Tools packaging, release and delivery handbook

Page 47 of 48
The Tools4LEAs project(s)

ANNEX II – Software signing

Depending on the operative system in which it is executed an executable file, it is required to sign the

software in order to satisfy the security rules established by the OS to be able to execute software.

For desktop applications, the type of certificate depends on the operating system being used, as

described below:

Windows OS certificates

There are two kind of code signing certificates to sign a software on Windows, an

individual/organization certificate and an extended validation certificate. An individual/organization

certificate consists on a certificate file which it is used along with a password to sign software, this

certificate gives standard validation, verifying the rules established by Microsoft Authenticode to be

trusted.

On the other hand, an Extended Validation certificate gives full trust to any software signed with this

type of certificate, verifying the rules established by Microsoft Authenticode and SmartScreen. This is

the preferred option used by EACTDA since it does not return any kind of warning from the OS, it

consists of a certificate file that it is stored on a physical USB key where it occurs the signing of a

software along with a password.

Mac OS certificates

For a Mac desktop application, it is necessary to obtain a code signing certificate through a Mac

Developer Account, which it consists on a normal Mac account subscribed to the Apple Developer

Program. This subscription allows to create any kind of certificate to sign applications depending on

how they are distributed by different channels. This will prevent a warning from the MacOS

gatekeeper, a program which verifies if a software is from a trusted developer when it is executed

software on Mac.

On the other hand, regarding web applications, it is important to remark the usage of SSL certificates

to secure the data transmission between the server and the client. If it is the case of a web application

that runs over a private computers network, it should be created self-signed certificates and if it is the

case of a web application running over a public computers network, it should be obtained a certificate

issued by a recognized certificate authority.

D3.17 Tools packaging, release and delivery handbook

Page 48 of 48
The Tools4LEAs project(s)

ANNEX III – Overview of EACTDA’s repository of tools

The EACTDA’s repository of tools consists on a web platform which main purpose is to get feedback

from the end-users about any tool.

In this platform, each tool already evaluated or to evaluate counts with a page in which the tool can

be downloaded along with other auxiliar content such as its installation manual, its user guide, etc.

The content which conforms the entire package of a tool.

